Sphingomyelinase treatment of low density lipoprotein and cultured cells results in enhanced processing of LDL which can be modulated by sphingomyelin.

نویسندگان

  • A K Gupta
  • H Rudney
چکیده

The addition of neutral sphingomyelinase from S. aureus to the medium of rat intestinal epithelial cell cultures (IEC-6) containing added human low density lipoprotein (LDL) resulted in two- to fivefold increases in LDL uptake and degradation. This overall effect was shown to be the combined result of sphingomyelinase activity on the composition of the LDL particle and a separate action directly on the cells when native LDL was incubated with sphingomyelinase from S. aureus followed by removal of the sphingomyelinase. Analysis of sphingomyelinase-treated LDL showed that > 95% of the sphingomyelin (SM) was hydrolyzed, but no changes were observed in all the other components of the LDL particle. This modified LDL particle (SM(-)LDL) was also bound and degraded at higher rates than control LDL in a variety of cell lines, e.g., HepG2, GM-43, and CHO-K1 cells. No evidence of increased aggregation of SM(-)LDL could be observed. The increased processing of SM(-)LDL was due to enhanced affinity to LDL receptors and not to an increase in LDL receptor number. When sphingomyelinase from S. aureus was added to the medium of IEC-6 or GM-43 cells, which were processing SM(-)LDL, further increases in SM(-)LDL processing were observed, which were primarily due to greatly enhanced cellular degradation of SM(-)LDL, with little change in receptor binding and cell association. Since there was little sphingomyelin remaining in SM(-)LDL, it was assumed that the action of sphingomyelinase on the cells resulted in the enhanced degradation. In support of this concept, previous addition of sphingomyelin to cells growing in lipoprotein-deficient medium followed by addition of SM(-)LDL greatly inhibited the degradation of the apolipoprotein of SM(-)LDL. On the other hand, addition of sphingomyelin concomitantly with SM(-)LDL did not inhibit degradation. These results are interpreted to indicate that there may be two pathways for cellular processing of sphingomyelin, one of which may be a determinant in the lysosomal processing of the apolipoprotein of LDL. In support of this concept, addition of desipramine, an inhibitor of lysosomal sphingomyelinase, to IEC-6 cells in culture greatly inhibited the degradation of 125I-labeled LDL without affecting the receptor binding and cell association. Overall, these results suggest that sphingomyelin may play a modulatory role in cellular cholesterol homeostasis by regulating uptake of LDL as well as LDL processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphingomyelinase, an enzyme implicated in atherogenesis, is present in atherosclerotic lesions and binds to specific components of the subendothelial extracellular matrix.

Atherosclerotic lesions contain an extracellular sphingomyelinase (SMase) activity that hydrolyzes the sphingomyelin of subendothelial low density lipoprotein (LDL). This SMase activity may promote atherosclerosis by enhancing subendothelial LDL retention and aggregation, foam cell formation, and possibly other atherogenic processes. The results of recent cell-culture studies have led to the hy...

متن کامل

Regulation of the threshold for lipoprotein-induced acyl-CoA:cholesterol O-acyltransferase stimulation in macrophages by cellular sphingomyelin content.

Macrophage acyl-CoA:cholesterol O-acyltransferase (ACAT), a key enzyme in atheroma foam cell formation, is stimulated by lipoproteins only after a "threshold" amount of cholesterol has accumulated in the cell. The present study explores the hypothesis that cellular sphingomyelin, by increasing the capacity of the cell to accommodate excess cholesterol, can influence the threshold of ACAT stimul...

متن کامل

Oxidation of cholesterol in low density and high density lipoproteins by cholesterol oxidase.

The cholesterol oxidase-catalyzed oxidation of cholesterol in native low density (LDL) and high density lipoproteins (HDL3) as well as in monolayers prepared from surface lipids of these particles, has been examined. The objective of the study was to compare the oxidizability of cholesterol, and to examine the effects of lipid packing on oxidation rates. When [3H]cholesterol-labeled lipoprotein...

متن کامل

Impairment of exogenous sphingomyelin degradation in cultured fibroblasts from familial hypercholesterolemia.

The degradation of exogenous sphingomyelin was investigated in cultured fibroblasts from normal subjects and subjects with familial hypercholesterolemia, either in whole medium or in lipoprotein-deficient medium. When introduced in whole medium, sphingomyelin degradation was significantly decreased (about 1.5-fold) in heterozygotes, and dramatically (about 4-fold) in homozygotes from familial h...

متن کامل

Glucose Influence on Copper Ion-Dependent Oxidation of Low Density Lipoprotein

Background: It is well established that oxidative modification of low density lipoprotein (LDL) plays a causal role in human atherogenesis and the risk of atherosclerosis is increased in patients with diabetes mellitus. We examined the in vitro effect of glucose on native and glycated LDL oxidation using copper ion dependent oxidation system. Methods: In this study, LDL was isolated from plasma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of lipid research

دوره 33 12  شماره 

صفحات  -

تاریخ انتشار 1992